
74 CHINESE OPTICS LETTERS / Vol. 5, No. 2 / February 10, 2007

A new adaptive nonuniformity correction algorithm for
infrared line scanner based on neural networks
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The striping pattern nonuniformity of the infrared line scanner (IRLS) severely limits the system perfor-
mance. An adaptive nonuniformity correction (NUC) algorithm for IRLS using neural network is proposed.
It uses a one-dimensional median filter to generate ideal output of network and can complete NUC by a
single frame with a high correction level. Applications to both simulated and real infrared images show
that the algorithm can obtain a satisfactory result with low complexity, no need of scene diversity or global
motion between consecutive frames. It has the potential to realize real-time hardware-based applications.
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Infrared line scanner (IRLS) is widely used for civil and
space imaging applications. It suffers from a common
problem, fixed pattern noise (FPN) or spatial nonunifor-
mity, which results from the different responses of each
sensor to the uniform irradiance. For IRLS, FPN is usu-
ally manifested as horizontal stripes. It is temporally
constant and drifts slowly with the external factors. De-
spite recent rapid advances in nonuniformity correction
(NUC) technology[1−4], the striping nonuniformity for
IRLS remains a serious problem. Though many NUC al-
gorithms can have, to some degree, a better effect in cor-
recting staring type focal plane arrays (FPAs), but they
are not readily applied to the scanning type FPA. Here
we propose an adaptive neural network NUC algorithm
for IRLS. It does not need any motion existing between
frames and can complete nonuniformity compensation in
only a single frame. Assuming the NUC parameters of
each sensor remain constant in a certain block of frames,
and random drift exists between blocks, then the algo-
rithm may be further simplified by using the correction
results of a single frame instead of a block. So the com-
mercial potential of this algorithm is huge.

The response of detector is modeled linearly. Suppose
each pixel in the image is a neuron, and each neuron has
a weight and a bias. For IRLS, the weights and biases
in each row are all the same, namely, g(i, j) = g(i) and
o(i, j) = o(i), so a commonly used linear model for the
(i, j)th FPA-sensor output y(i, j) is given by

x̂(i, j) = ĝ(i) · y(i, j) + ô(i), (1)

where, i = 1, 2, · · · , M and j = 1, 2, · · · , N . x(i, j) is
the irradiance actually received by each sensor. g(i) and
o(i) represent gain and offset of the detector. If the pa-
rameters are adaptive, the model in Eq. (1) can be con-
sidered as the simplest neural network (NNT) structure.
When the sensor readout data y(i, j) inputs to the neu-
ron, x̂(i, j), ĝ(i) and ô(i) are the corresponding estimated
output values.

In traditional NNT algorithms[5,6], ĝ(i, j) and ô(i, j)
must be renewed frame by frame by using the steepest
descent linear regression[1−4] and scene variation between
frames is needed. But when the traditional methods

are applied to sequence produced by IRLS, they can-
not remove the horizontal stripes effectively. Further-
more, if the difference between neighboring frames is not
sufficient, the renewing process of correction parameters
may be degenerated, or severe ghosting artifacts will be
produced. So the sufficient global motion between neigh-
boring frames is required.

Considering all the above limitations, an adaptive NNT
algorithm aiming at scanning type IRLS is proposed. For
a frame obtained from IRLS of size M × N , only M de-
tectors (neurons) need correcting, hence the numbers of
gains and offsets corresponding to the IRLS are M . For
every row, each neuron corresponds to N outputs, or N
values recorded.

In the improved method, ĝ(i) and ô(i) must be up-
dated column by column using linear regression to obtain
a good estimation for the real infrared data.

However, the learning process based on steepest de-
scent model is not robust enough, and the production of
ghosting artifacts cannot be effectively prevented, which
is a problem presented in most scene-based NUC tech-
niques. To improve the parameter update process, some
optimization methods[6] are adopted, including momen-
tum, regularization and adaptive learning rate.

The three optimizations have their own advantages re-
spectively. Specifically, the regularization factor r is only
added to the gain updating, forcing all the gain values in
the same column to have a unitary mean, and acceler-
ating the convergence rate. The use of momentum can
improve the stability of the algorithm by preventing the
local minima problem and suppressing the production of
ghosting. Furthermore, the adaptive learning rate η(i, j)
is defined to be inversely proportional to σ2

y(i, j) which
is the local spatial square variance of the input image
y(i, j). It can speed up the convergence greatly and con-
trol the production of artifacts. Hence after optimizing
strategy, the equation of parameter learning process can
be improved as

ĝi(j + 1) = ĝi(j) − η(i, j) · E(i, j) · y(i, j)

+α · [ĝi(j) − ĝi(j − 1)] + rj , (2)
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ôi(j + 1) = ôi(j) − η(i, j) · E(i, j)

+α · [ôi(j) − ôi(j − 1)], (3)

rj = λ · [1 − 1
M

M∑
i=1

gi(j)], η(i, j) = K/[1 + σ2
y(i, j)],

(4)

where λ, α and K (the maximum learning rate allowed)
are all constants. Note that η of each frame can be com-
puted together previously as priori. The initial values of
parameter estimation are g(i) = 1 and o(i) = 0. E(i, j) is
the error function, which is defined as the difference be-
tween the estimated output x̂(i, j) and the desired target
value T (i, j),

E(i, j) = x̂(i, j) − T (i, j). (5)

It is notable that the network expected output T (i, j)
is not the mean of four nearest neighboring estimated
outputs, but a filtered result got from a one-dimensional
(1D) median filter which is perpendicular to the direction
of horizontal stripes. The reason to choose median filter
is that it can smooth off the striation waves, and force
the steep gradient along the column to become softer.
Especially, the optimal length of filter window should be
determined by testing the image quality of the corrected
results with different lengths of median filter.

Since the correction is completed in one frame, there
are no specific requirements for scene variation of the
neighboring frames, thus relaxing the limitations and fa-
cilitating its realization in actual hardware.

In order to test the algorithm performance, artificial
nonuniformity was introduced in the simulated images
by varying the variance of the weights and biases as
σ2

weight = 0.01 and σ2
bias = 0.05. The means of weights

and biases are 1 and 0 respectively, and both are of Gaus-
sian random distribution. Every pixel value in the same
row multiplies same weight then same bias is plus, thus
noise in pattern of horizontal stripes is added to the clear
infrared (IR) image.

To study the performance of the proposed method in
the mean square error sense, the peak signal-to-noise ra-
tio (PSNR) is defined as

RMSE =
√

1
MN

∑
i,j

(Iij − Îij)2,

PSNR = 20 · log10(
2b

RMSE
), (6)

where Iij and Îij represent the (ij)th pixel of the clean
infrared image and the corrected image respectively, i
is the row index of image ranging from 1 to M . The
unit for PSNR is dB, larger value for the PSNR indicates
higher image quality. The image size is M × N pixels,
and b represents the number of bits per pixel in the im-
age, which in this case is 8.

According to the learning process defined in Eqs. (2)—
(5), we have tested the impact of the expected outputs
produced by different lengths of median filter windows

on PSNR. Here we choose λ = 0.9, α = 0.9 and use a
3× 3 window size to compute the local variance σ2

y(i, j),
we choose this window size because of its efficiency and
good effect[6].

First we need test the optimal length of median filter.
Seven lengths of median filter window, i.e. 3 × 1, 5 × 1,
· · · , 15 × 1, were applied to the corrupted image and
PSNR value of each correction result was computed, as
shown in Fig. 1. It is clear that the use of 7 × 1 window
achieves the best performance. Neither too big nor too
small window size is satisfactory. By too small window,
the smoothing effect is insufficient, while by too big win-
dow, the smoothing effect is remarkable, but the details
are blurred. Hence the optimal length of window should
be determined by comparison of the performance crite-
ria. For a fixed IRLS, the mode of striation is also fixed;
once the optimal median filter window is determined, it
can be stored and used permanently without change.

Then the correction parameters are evaluated column
by column as Eqs. (2)—(5) and result in the gain and
offset estimate matrix. Theoretically, the matrix values
along rows should be equal, since they are generated
by the same detector’s output, however, they are not
identical in fact. The final compensator should be the
average of the estimates along one row, because this can
significantly enhance the NUC algorithm’s performance
compared with directly applying the estimate matrix to
the frame.

Fig. 1. Impact of median filter length for NUC performance.

Fig. 2. Correction results of the simulation using two NNT
algorithms.
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In Fig. 2, the capability of the algorithm in removing
nonuniformity is presented, where Fig. 2(a) is the true
clean infrared (IR) data, Fig. 2(b) is its corruption with
artificial noise. The amount of remnant horizontal ar-
tifacts appears noticeable in Fig. 2(c) using traditional
NUC method, and Fig. 2(d) shows the corrected result
by the improved NNT method, with a better correction
level. Their corresponding PSNR values are listed below
the diagrams. Usually PSNR value will increase 3—6 af-
ter correction.

To test its correction capability, the adaptive NNT al-
gorithm is also applied to real IR data captured with
IRLS. We use only one frame captured by a 320 × 240
uncooled scanning type IRLS for correction. In order to
obtain best result by using the algorithm, the first thing
to do is to determine the optimal median filter window.
In real IR data, it is impossible to apply PSNR. So we de-
termine the window by another criterion, the roughness
parameter ρ, which is defined as

ρ(I) =
‖Icol‖1 + ‖Irow‖1

‖I‖1

, (7)

where I is the image matrix, Irow, Icol represent the
difference matrix along rows and columns respectively.
‖‖1 is the l1 norm of I. Its computation needs no in-
formation of true clear image, while PSNR can only be
used as criterion of simulated data testing. For a uni-
form image, ρ equals to zero, and it increases when the
difference between image pixels becomes greater. The
smaller value of ρ, the higher smoothness of the result.
As Table 1 shows, 7 × 1 median filter is the best choice
in the lengths varying from 5 to 15. Figure 3(a) is the
real IR frame, notice that horizontal stripes are obvious.

Table 1. Roughness Comparison on Original Image
and the Corrected Results by

Different Filter Lengths

Filter Length Original 3 5 7

Roughness 0.8423 0.8167 0.8085 0.8023

Filter Length 9 11 13 15

Roughness 0.8057 0.8077 0.8079 0.8083

Fig. 3. Correction result of the real IR data.

However in Fig. 3(b), the stripe is completely eliminated.
With all small details preserved, the scene of Fig. 3(b) ap-
pears uniform.

We presume that the NUC parameters of each detector
— gain and offset, are time-varying but remain constant
in a block of frames; drift occurs or may become severe
between blocks because of the scene changing, which is
consistent with the actual operation basically. So in prac-
tice, the proposed NUC algorithm can be applied to the
first frame of one length-fixed block, getting the correc-
tion parameters and using them to compensate nonuni-
formity for the whole frames of the block. When another
block begins, the NUC technique is applied once again
and the offset is re-corrected. Such a cycle is repeated as
often as necessary during operation of IR FPA.

We have presented an enhanced NNT technique for
nonuniformity correction in 1D IR line sensors. A sim-
plified NNT structure is introduced, making the correc-
tion parameter update in self-learning process column by
column. A vertical median filter is used to smooth hor-
izontal stripes, and the optimal window length can be
tested and selected once for all. Furthermore, some op-
timization techniques are added in order to improve the
stability of the algorithm and to accelerate the conver-
gence rate. The final compensators are taken from the
mean estimates along rows to reduce ghosting artifacts.

From applications to simulated and real corrupted IR
data, it can be concluded that the adaptive NUC algo-
rithm achieves a higher correction level with less com-
plexity. It needs no scene (motion) variation or some
statistical assumptions. It can be based on correction
between frames and can also be used in intermittent cy-
cles in practical applications, leading to a huge potential
for its real-time hardware-based realization.
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